COURSE TITLE	ENGLISH CODE /NO	ARABIC CODE/NO.	CONTACT HOURS /WEEK			C.U.
			Th.	Pr.	Tr.	TCU
Electrical Circuits II	EEN 201	هن ك ۲۰۱	3	-	1	3
Pre-requisites		Electrical Circuits I (EEN 100)				

Instructor:

Hussain Bassi, Assistant Professor

http://hmbassi.kau.edu.sa/

Office Room and Hours: 5-103, Monday and Wednesday 11 am-1 pm

Text book: C. K. Alexander & M. N. Sadiqu, Fundamentals of Electric Circuits, 4th ed., Mc-Graw-Hill, 2009 – ISBN-10: 0077263197 | ISBN-13: 978-0077263195

Supplementary references:

James Nilson & Susan Riedel, "Electric Circuits", 9th ed., Pearson Prentice Hall, 2008 - ISBN-10: 0136114997 | ISBN-13: 978-0136114994

Class Room and Time:

Room 5-102, Monday and Wednesday 9:30 am -10:50 am

Objectives:

On successful completion of this course, student will be able to:

- 1. Analyse the three-phase systems
- 2. Identify the two types of resonance circuits
- 3. Analyse electric circuits with magnetically-coupled elements
- 4. Express circuit elements into Laplace domain
- 5. Evaluate the Fourier series coefficients of periodic signals
- 6. Evaluate the convolution integral form of two signals
- 7. Evaluate the convolution integral to find the response of electrical circuits
- 8. Express the graphical method of the convolution integral to find the electrical circuit response
- 9. Distinguish between one-port and two-port networks
- 10. Evaluate the different parameters of two-port networks
- 11. Analyse the terminated and non-terminated two-port networks

Contents:

- 1- Three-phase circuits
- 2- Magnetically-coupled circuits
- 3- Transient analysis via the conventional
- 4- Laplace methods.
- 5- Mutual inductance resonance circuits.
- 6- Response of first-second order RLC circuits
- 7- Two-port circuits

Course Outcomes:

A-Knowledge:

On successful completion of this course, student will be able to:

- 1- Define and apply basic terms and relationships involving inductance and capacitance.
- 2- Define transient analysis via the conventional
- 3- Define Laplace methods.
- 4- Define locus diagram
- 5- Define mutual inductance resonance circuits.
- 6- Define response of first-second order rlc circuits
- 7- Define two-port circuits

B-Cognitive Skills:

On successful completion of this course, student will be able to:

- 1- Evaluate the steady-state conditions of electric circuits based on the circuit configurations.
- 2- Assess the transient response of first-order and second-order circuits.
- 3- Analyse solutions for improving the performance of circuits.
- 4- Analyse linear circuits containing operational amplifiers.
- 5- Analyse first-order and second-order circuits to determine the complete circuit response.

C- Interpersonal skills and responsibilities:

On successful completion of this course, student will be able to:

- 1- Evaluate and apply basic electrical laws, components, definitions, and units.
- 2- Act to formulate circuit equations.
- 3- Evaluate the important variables in electric circuits.
- 4- Complete the two-port model representation for resistive electrical networks and to use two port nodes

D- Analysis and communication:

On successful completion of this course, student will be able to:

- 1. Communicate effectively.
- 2. Seek appraise information from a wide range of sources.
- 3. Collaborate and innovate in problem solving.
- 4. Manage time and resources

Assessment methods for the above elements

- 1- Written exams (mid-term & final) to assess understanding and scientific knowledge
- 2- Quizzes to assess ability to solve problems and analyse results independently
- 3- Project report to assess practical, and presentation skills

Grading system:

Total	100 %
Final exam	40 %
Mid-term exam	30 %
Quizzes	20 %
Course Project or Reports	10 %

Course Policies:

- 1. There will be a quiz for each chapter.
- 2. Cheating means zero for everyone involved, fully or partially, in the cheating.
- 3. All participations are getting an alarm five minutes in advance.
- 4. Course Project or Reports to be determined later (TBD). For now, learn *MATLAB* and *PSpice*.
- 5. Bring your calculator every time you come to class
- 6. Write CLEARLY in pencil or you will lose some points.
- 7. Round your answers to two decimal points.

Course Contribution to professional Component

Engineering Science: 100%

Engineering Design: 0 %

Time table for distributing theoretical course contents					
Week	Theoretical course contents	Remarks			
1	Circuits I Review	Ch1 – Ch11			
2-3	Three-Phase Circuits	Ch 12			
3-4	Magnetically Coupled Circuits	Ch 13			
4-5	Frequency Response	Ch 14			
5 - 6	The Laplace Transform	Ch 15			
7	Midterm Exam				
7 - 8	Applications of Laplace Transforms	Ch 16			
9 - 10	Fourier Series	Ch 17			
13 - 14	Two-Port Networks	Ch 19			
15	Project				
	Final exam.				